

Optimal monetary policy under menu costs

Daniele Caratelli ¹ **Basil Halperin ²**

¹Treasury OFR, ²Stanford DEL

April 2025

Suppose prices are sticky. What should central banks do?

▶ motivation

Textbook benchmark: Tractable-but-unrealistic **Calvo friction**

- ▶ *Random and exogenous* price stickiness

Textbook benchmark: Tractable-but-unrealistic **Calvo friction**

- ▶ *Random and exogenous* price stickiness

⇒ **Optimal policy:** **Inflation targeting**

[Woodford 2003; Rubbo 2023]

Textbook benchmark: Tractable-but-unrealistic **Calvo friction**

- ▶ *Random and exogenous* price stickiness

⇒ **Optimal policy:** **Inflation targeting**

[Woodford 2003; Rubbo 2023]

Criticism:

1. Theoretical critique: Not microfounded
2. Empirical critique: State-dependent pricing is a better fit

[Nakamura *et al* 2018; Cavallo and Rigobon 2016; Alvarez *et al* 2018; Cavallo *et al* 2023]

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment
2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment
2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ **Optimal policy:** countercyclical inflation after sectoral shocks

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment
2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ **Optimal policy:** countercyclical inflation after sectoral shocks

Optimal policy under menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment
2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ **Optimal policy:** countercyclical inflation after sectoral shocks

1. **Stylized analytical model**

Optimal policy under menu costs

Our contribution: More realistic (less tractable) **menu costs**

1. Fixed cost of price adjustment
2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ **Optimal policy:** countercyclical inflation after sectoral shocks

1. **Stylized analytical model**
2. **Quantitative model**

Related literature

Contribution:

Related literature

Contribution:

1. Optimal monetary policy with sectors / relative prices

- ▶ Calvo *[Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]*
- ▶ Downward nominal wage rigidity *[Guerrieri-Lorenzoni-Straub-Werning 2021]*

Related literature

Contribution:

1. Optimal monetary policy with sectors / relative prices

- ▶ Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
- ▶ Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]

2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

3. Adam and Weber (2023): menu costs + trending productivities

⇒ no direct costs, first-order approximation

Related literature

Contribution:

1. Optimal monetary policy with sectors / relative prices

- ▶ Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
- ▶ Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]

2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

3. Adam and Weber (2023): menu costs + trending productivities

⇒ no direct costs, first-order approximation

4. Karadi, Nakov, Nuno, Pasten, and Thaler (2024): contemporaneous single-sector, quantitative model

Related literature

Contribution:

1. Optimal monetary policy with sectors / relative prices

- ▶ Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
- ▶ Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]

2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

3. Adam and Weber (2023): menu costs + trending productivities

⇒ no direct costs, first-order approximation

4. Karadi, Nakov, Nuno, Pasten, and Thaler (2024): contemporaneous single-sector, quantitative model

4. Non-normative menu cost literature

Roadmap

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ▶ Each sector is a continuum of firms, bundled with CES technology
- ▶ Static model (& no linear approximation)

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ▶ Each sector is a continuum of firms, bundled with CES technology
- ▶ Static model (& no linear approximation)

Household's problem:

$$\max_{C,N,M} \ln(C) - N + \ln \left(\frac{M}{P} \right)$$

$$\text{s.t. } PC + M = WN + D + M_{-1} - T$$

$$C = \prod_{i=1}^S c_i^{1/S}$$

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ▶ Each sector is a continuum of firms, bundled with CES technology
- ▶ Static model (& no linear approximation)

Household's problem:

$$\max_{C, N, M} \ln(C) - N + \ln \left(\frac{M}{P} \right)$$

$$\text{s.t. } PC + M = WN + D + M_{-1} - T$$

$$C = \prod_{i=1}^S c_i^{1/S}$$

Optimality conditions:

$$c_i = \frac{1}{S} \frac{PC}{p_i}$$

$$PC = M$$

$$W = M$$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

Demand: $y_i(j) = y_i \left(\frac{p_i(j)}{p_i} \right)^{-\eta}$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

- Sectoral productivity shocks: A_i

Demand: $y_i(j) = y_i \left(\frac{p_i(j)}{p_i} \right)^{-\eta}$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

- ▶ Sectoral productivity shocks: A_i
- ▶ Firms are identical within a sector

Demand: $y_i(j) = y_i \left(\frac{p_i(j)}{p_i} \right)^{-\eta}$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - W \psi \chi_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - W\psi\chi_i$$

Menu cost: adjusting price requires ψ extra units of labor

- χ_i : indicator for price change vs. not

Technology: In given sector i , continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - W\psi\chi_i$$

Menu cost: adjusting price requires ψ extra units of labor

- χ_i : indicator for price change vs. not

⇒ **Direct cost of menu costs:** excess disutility of labor

$$N = \sum_i n_i + \psi \sum_i \chi_i$$

- Other specifications do not affect result

Objective function of sector i firm: $\left(p_i y_i - \frac{w}{A_i} y_i (1 - \tau) \right) - W\psi\chi_i$

Objective function of sector i firm: $\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - W\psi\chi_i$

Optimal reset price: if adjusting, price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

If not adjusting: inherited price p_i^{old}

Objective function of sector i firm: $\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - W\psi\chi_i$

Optimal reset price: if adjusting, price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

If not adjusting: inherited price p_i^{old}

Inaction region: don't adjust iff $p_i^* = \frac{W}{A_i}$ close to p_i^{old}

- Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$

- Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

- Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

Proposition 1: there exists a threshold level of productivity \bar{A} s.t.:

1. If shock is not too small, $A_1 \geq \bar{A}$, then optimal policy is nominal wage targeting:

$$W = W^{ss}$$

- Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

Proposition 1: there exists a threshold level of productivity \bar{A} s.t.:

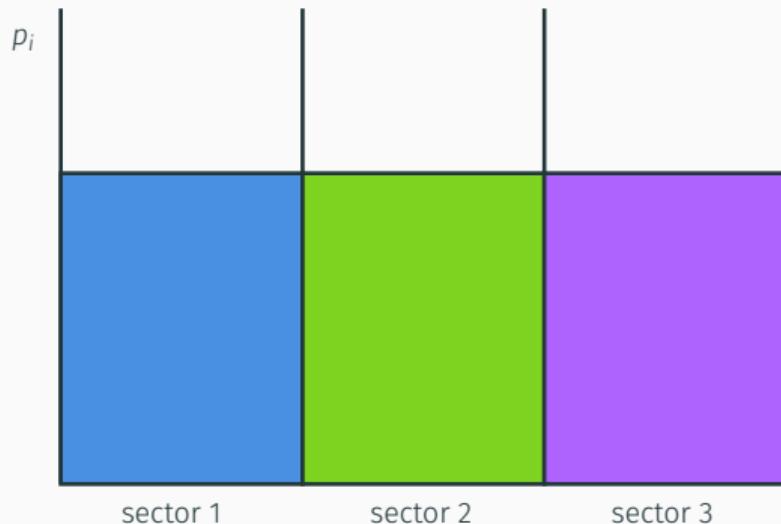
1. If shock is not too small, $A_1 \geq \bar{A}$, then optimal policy is nominal wage targeting:

$$W = W^{ss}$$

2. If shock is small, $A_1 < \bar{A}$, then optimal policy is to ensure no sector adjusts:

$$p_i = p_i^{ss} \ \forall i$$

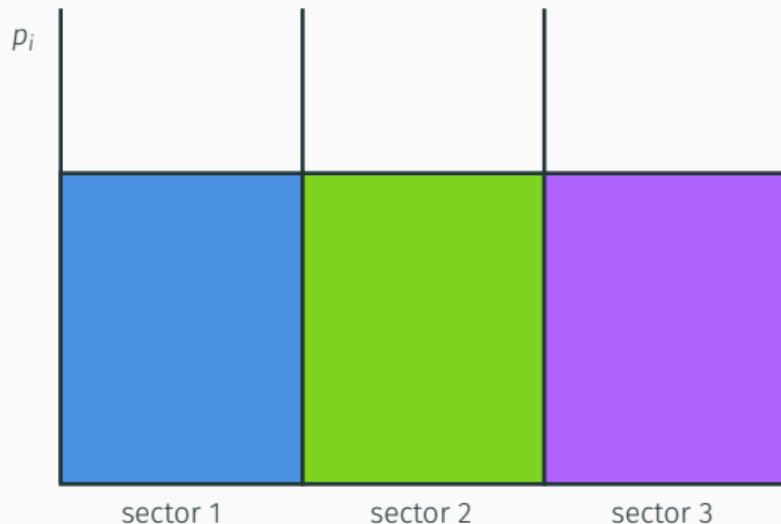
Recall: $p_i^* = MC_i = \frac{W}{A_i}$



Prices initially

- ▶ Sector 1 productivity $A_1 \uparrow$
⇒ relative price p_1/p_k should fall

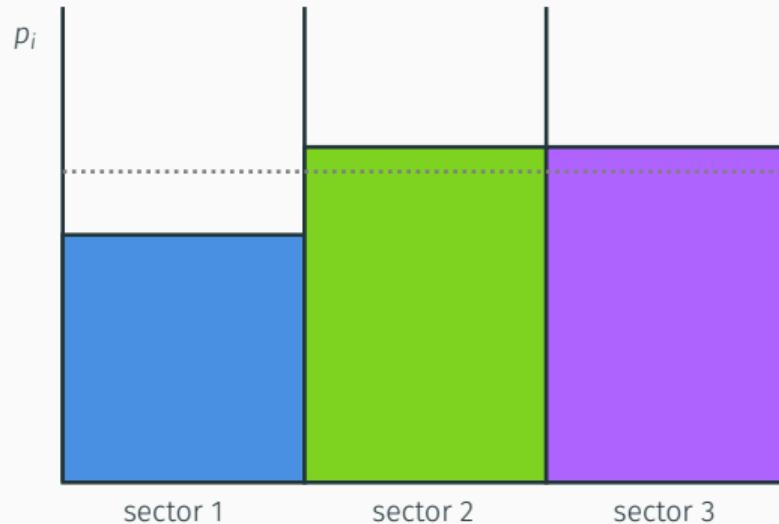
Recall: $p_i^* = MC_i = \frac{W}{A_i}$



Prices initially

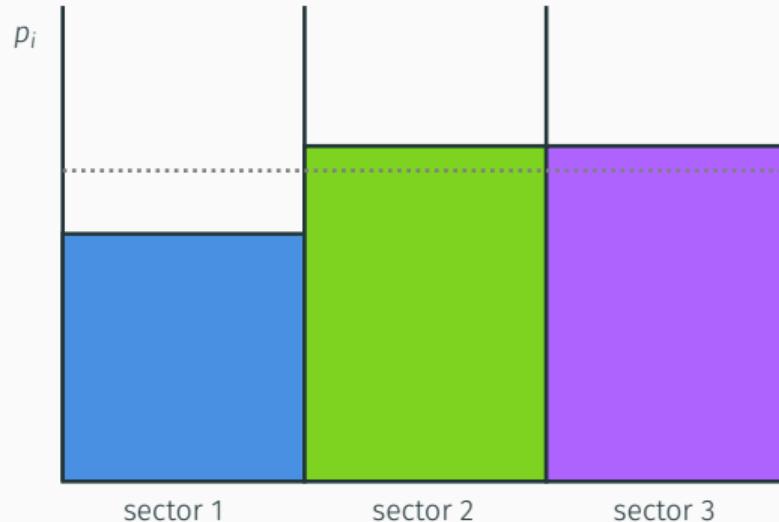
- ▶ Sector 1 productivity $A_1 \uparrow$
⇒ relative price p_1/p_k should fall
1. Under inflation targeting:
 - Constant P
 - ⇒ $p_1 \downarrow$ and $p_k \uparrow$

Recall: $p_i^* = MC_i = \frac{W}{A_i}$



- ▶ Sector 1 productivity $A_1 \uparrow$
⇒ relative price p_1/p_k should fall
1. Under inflation targeting:
 - Constant P
 - ⇒ $p_1 \downarrow$ and $p_k \uparrow$
 - ⇒ **every sector pays a menu cost**

Recall: $p_i^* = MC_i = \frac{W}{A_i}$

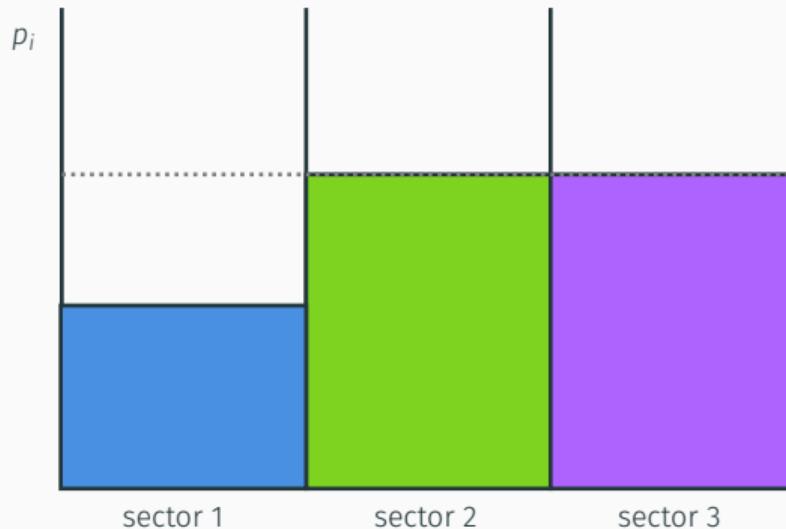


Inflation targeting

$$W^f - S\psi$$

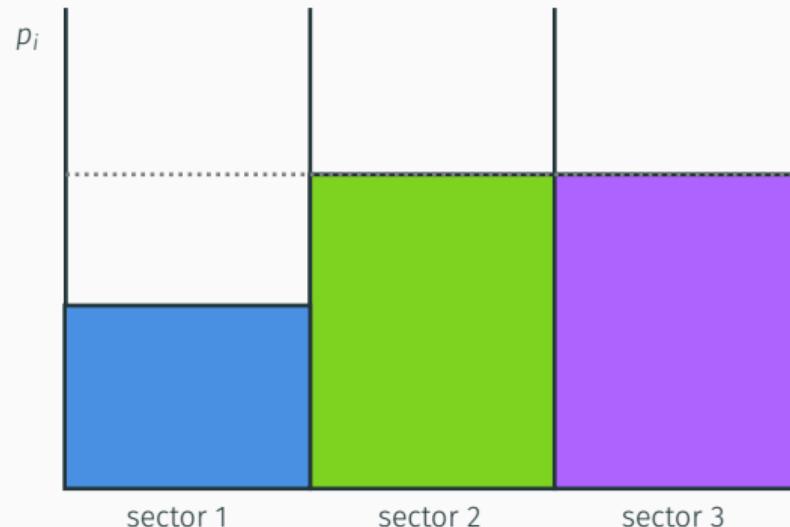
- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k **constant**

Recall: $p_i^* = MC_i = \frac{w}{A_i}$



- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall
 1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost

Recall: $p_i^* = MC_i = \frac{W}{A_i}$

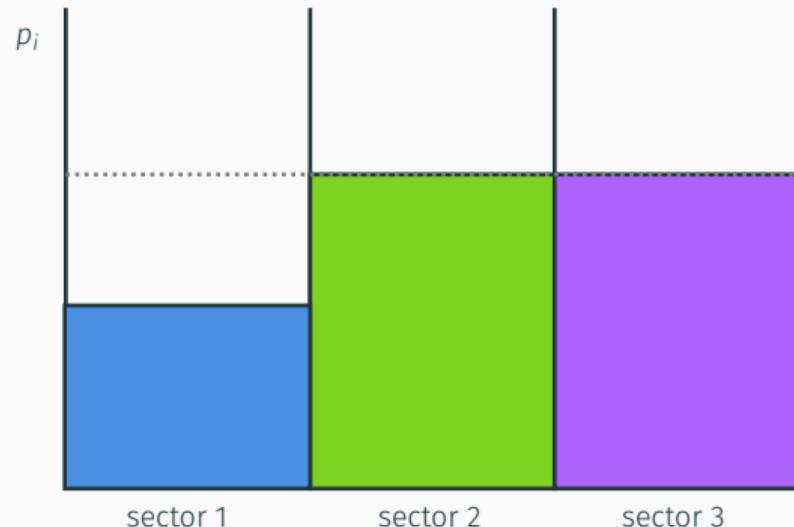


Only sector 1 adjusts

$$W^f - \psi$$

Recall: $p_i^* = MC_i = \frac{W}{A_i}$

- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost
 - How to ensure p_k constant?



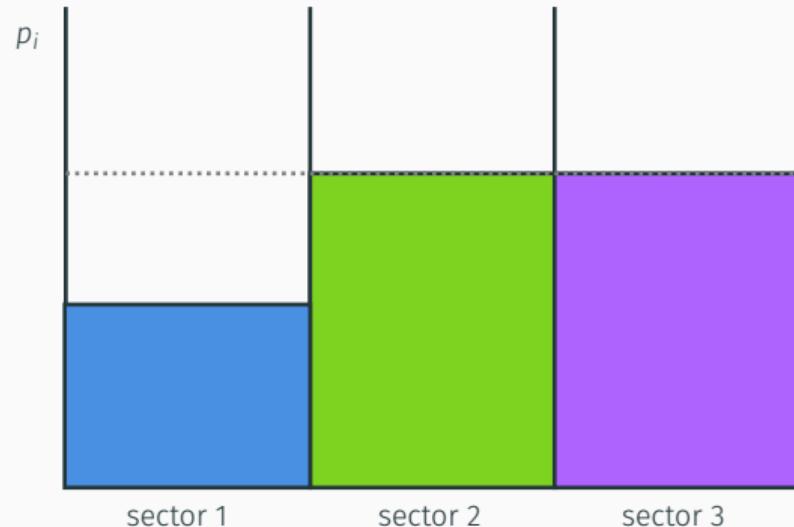
Only sector 1 adjusts

$$W^f - \psi$$

$$\text{Recall: } p_i^* = MC_i = \frac{W}{A_i}$$

- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stabilize nominal MC of unshocked firms



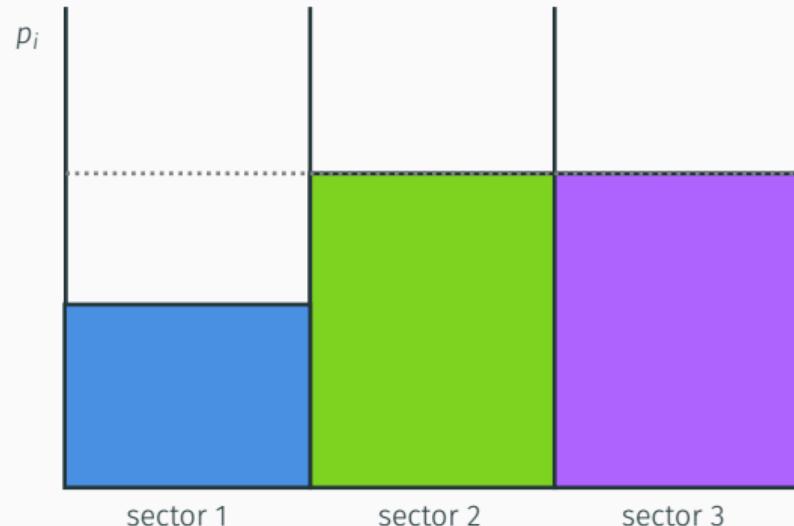
Only sector 1 adjusts

$$W^f - \psi$$

$$\text{Recall: } p_i^* = MC_i = \frac{W}{A_i}$$

- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall
1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stable W



Only sector 1 adjusts

$$W^f - \psi$$

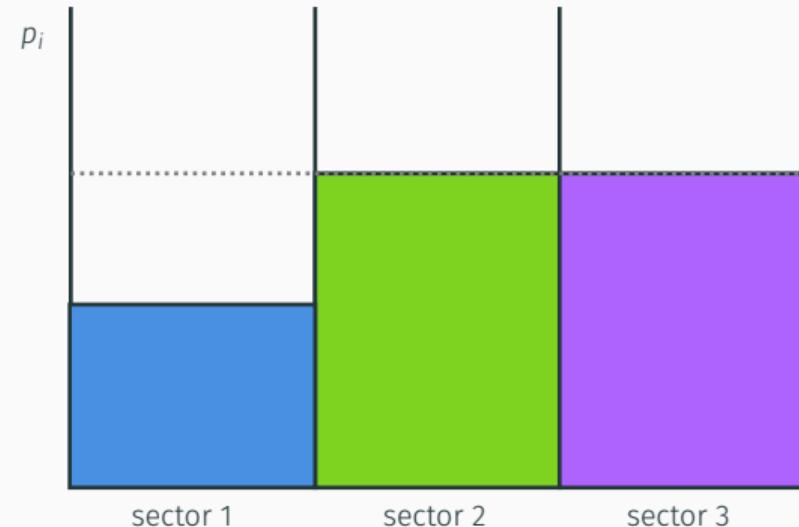
Recall: $p_i^* = MC_i = \frac{W}{A_i}$

- Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall

1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stable W

- Observe: in aggregate, $Y \uparrow, P \downarrow$



Only sector 1 adjusts

$$W^f - \psi$$

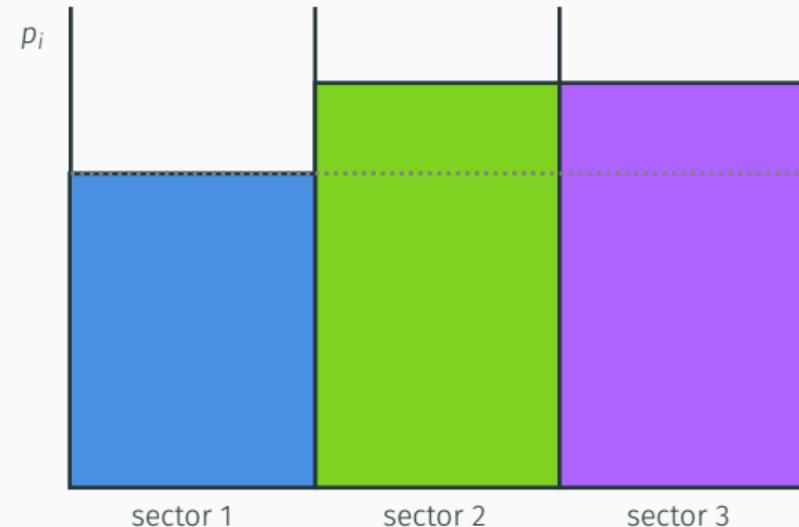
Recall: $p_i^* = MC_i = \frac{W}{A_i}$

- ▶ Sector 1 productivity $A_1 \uparrow$
 \implies relative price p_1/p_k should fall

1. Under inflation targeting:
 - Constant P
 - $\implies p_1 \downarrow$ and $p_k \uparrow$
 - \implies every sector pays a menu cost
2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - \implies only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stable W

- Observe: in aggregate, $Y \uparrow, P \downarrow$



Only sectors k adjusts

$$W^f - (S - 1)\psi$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts		
Sector 1 not adjust		

Small shocks: state dependence of optimal policy

[math](#)[more math](#)

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{\text{flex}} - S\psi$	$\mathbb{W}_{\text{flex}} - \psi$
Sector 1 not adjust	$\mathbb{W}_{\text{flex}} - (S - 1)\psi$	

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{\text{flex}} - S\psi$	$\mathbb{W}_{\text{flex}} - \psi$
Sector 1 not adjust	$\mathbb{W}_{\text{flex}} - (S - 1)\psi$	

Lemma 1: If adjusting, only shocked sectors should adjust

$$\mathbb{W}_{\text{only 1 adjusts}} > \mathbb{W}_{\text{all adjust}}, \mathbb{W}_{\text{only } k \text{ adjust}}$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{\text{flex}} - S\psi$	$\mathbb{W}_{\text{flex}} - \psi$
Sector 1 not adjust	$\mathbb{W}_{\text{flex}} - (S - 1)\psi$	$-\ln(S - 1 + 1/A_1) - 1$

Lemma 1: If adjusting, only shocked sectors should adjust

$$\mathbb{W}_{\text{only 1 adjusts}} > \mathbb{W}_{\text{all adjust}}, \mathbb{W}_{\text{only } k \text{ adjust}}$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{\text{flex}} - S\psi$	$\mathbb{W}_{\text{flex}} - \psi$
Sector 1 not adjust	$\mathbb{W}_{\text{flex}} - (S - 1)\psi$	$-\ln(S - 1 + 1/A_1) - 1$

Lemma 1: If adjusting, only shocked sectors should adjust

$$\mathbb{W}_{\text{only 1 adjusts}} > \mathbb{W}_{\text{all adjust}}, \mathbb{W}_{\text{only } k \text{ adjust}}$$

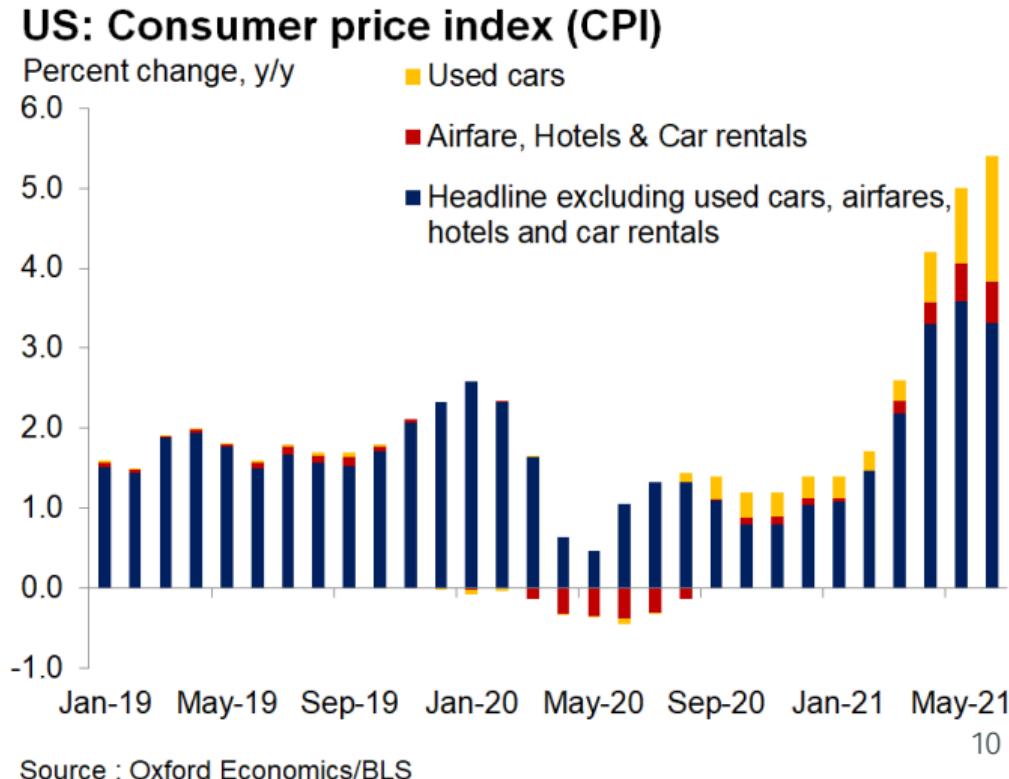
Lemma 2: $\exists \bar{A}$ such that

$$\mathbb{W}_{\text{only 1 adjusts}} > \mathbb{W}_{\text{none adjust}}$$

iff $A_1 > \bar{A}$. Furthermore, \bar{A} is increasing in ψ .

Interpretation: “looking through” shocks

Example: used cars (2021)



How large are menu costs?

► welfare loss of inflation targeting

Summary: at least 0.5% of firm revenues, plausibly much more

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure *frequency of price adjustment*
- (2) Build structural model
- (3) \Rightarrow *calibrate menu costs to fit*

Nakamura and Steinsson (2010):

- 0.5% of firm revenues

Blanco et al (2022):

- 2.4% of revenues

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure *frequency of price adjustment*
- (2) Build structural model
- (3) \Rightarrow *calibrate menu costs to fit*

Nakamura and Steinsson (2010):

- 0.5% of firm revenues

Blanco et al (2022):

- 2.4% of revenues

2. Direct measurement. For *physical adjustment costs*,

Levy et al (1997, QJE): 5 grocery chains

- 0.7% revenue

Dutta et al (1999, JMBC): drugstore chain

- 0.6% revenue

Zbaracki et al (2003, Restat): mfg

- 1.2% revenue

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

1. Any (HOD1) aggregator:

$$C = F(c_1, \dots, c_S)$$

2. Potentially DRS production

technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with
 $1/\alpha \in (0, 1]$

3. Any preferences quasilinear in

labor: $U(C, \frac{M}{P}) - N$

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

1. Any (HOD1) aggregator:

$$C = F(c_1, \dots, c_S)$$

2. Potentially DRS production technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with $1/\alpha \in (0, 1]$
3. Any preferences quasilinear in labor: $U(C, \frac{M}{P}) - N$

Nominal MC:

$$MC_i(j) = \left[\alpha \frac{W}{A_i^\alpha} (y_i p_i^\eta)^{\alpha-1} \right]^\theta$$
$$\theta \equiv [1 - \eta(1 - \alpha)]^{-1}$$

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

1. Any (HOD1) aggregator:

$$C = F(c_1, \dots, c_S)$$

2. Potentially DRS production technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with $1/\alpha \in (0, 1]$

3. Any preferences quasilinear in labor: $U(C, \frac{M}{P}) - N$

Nominal MC:

$$MC_i(j) = \left[\alpha \frac{W}{A_i^\alpha} (y_i p_i^\eta)^{\alpha-1} \right]^\theta$$
$$\theta \equiv [1 - \eta(1 - \alpha)]^{-1}$$

Proposition 1 extended: optimal policy stabilizes **nominal marginal costs of unshocked firms**

$\implies Y \uparrow, P \downarrow$

“Macro functional forms”

More general example:

$$1. \ C = \prod c_i^{1/s}$$

2. DRS production technology:

$$y_i(j) = A_i n_i(j)^{1/\alpha} \text{ with } 1/\alpha \in (0, 1)$$

3. CRRA preferences:

$$\frac{1}{1-\sigma} C^{1-\sigma} + \frac{1}{1-\sigma} \left(\frac{M}{P} \right)^{1-\sigma} - N$$

“Macro functional forms”

More general example:

$$1. \ C = \prod c_i^{1/s}$$

Nominal MC:

2. DRS production technology:

$$y_i(j) = A_i n_i(j)^{1/\alpha} \text{ with } 1/\alpha \in (0, 1)$$

3. CRRA preferences:

$$\frac{1}{1-\sigma} C^{1-\sigma} + \frac{1}{1-\sigma} \left(\frac{M}{P}\right)^{1-\sigma} - N$$

$$MC_i(j) = k \frac{W^{\lambda} p^{1-\lambda}}{A_i}$$
$$\lambda \equiv \frac{\sigma + \alpha - 1}{\sigma \alpha}$$

“Macro functional forms”

More general example:

$$1. \ C = \prod c_i^{1/\sigma}$$

Nominal MC:

$$2. \ DRS \text{ production technology:}$$

$$y_i(j) = A_i n_i(j)^{1/\alpha} \text{ with } 1/\alpha \in (0, 1)$$

$$MC_i(j) = k \frac{W^\lambda p^{1-\lambda}}{A_i}$$
$$\lambda \equiv \frac{\sigma + \alpha - 1}{\sigma \alpha}$$

$$3. \ CRRA \text{ preferences:}$$

$$\frac{1}{1-\sigma} C^{1-\sigma} + \frac{1}{1-\sigma} \left(\frac{M}{P}\right)^{1-\sigma} - N$$

Proposition 1 extended: optimal policy stabilizes **nominal marginal costs of unshocked firms**

⇒ stabilize a weighted average of wages and prices, $W^\lambda p^{1-\lambda}$

Production networks: stabilize a weighted average of P and W

Baseline model:

- ▶ Production technology:

$$y_i = A_i n_i$$

Roundabout production network:

- ▶ Production technology:

$$y_i = A_i n_i^{\beta} l_i^{1-\beta}$$

$$l_i = \prod_{k=1}^S l_i(k)^{1/S}$$

Production networks: stabilize a weighted average of P and W

Baseline model:

- ▶ Production technology:

$$y_i = A_i n_i$$

- ▶ Marginal cost:

$$MC_i = \frac{W}{A_i}$$

Roundabout production network:

- ▶ Production technology:

$$y_i = A_i n_i^{\beta} l_i^{1-\beta}$$

$$l_i = \prod_{k=1}^S l_i(k)^{1/S}$$

- ▶ Marginal cost:

$$MC_i = \kappa \frac{W^{\beta} P^{1-\beta}}{A_i}$$

Production networks: stabilize a weighted average of P and W

Baseline model:

- ▶ Production technology:

$$y_i = A_i n_i$$

- ▶ Marginal cost:

$$MC_i = \frac{W}{A_i}$$

- ▶ Optimal policy: stabilize nominal MC of unshocked sectors: stabilize W

Roundabout production network:

- ▶ Production technology:

$$y_i = A_i n_i^\beta l_i^{1-\beta}$$

$$l_i = \prod_{k=1}^S l_i(k)^{1/S}$$

- ▶ Marginal cost:

$$MC_i = \kappa \frac{W^\beta P^{1-\beta}}{A_i}$$

- ▶ Optimal policy: stabilize nominal MC of unshocked sectors: **stabilize $W^\beta P^{1-\beta}$**

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = \dots = A_S \equiv A$.

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = \dots = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = \dots = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proof idea:

- ▶ Relative prices don't need to change

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = \dots = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proof idea:

- ▶ Relative prices don't need to change
- ▶ Stable prices thus guarantee:
 1. Correct relative prices
 2. Zero direct costs

Additional extensions

1. Heterogeneity across sectors: a monetary “least-cost avoider” principal
[▶ more](#)
2. Optimal policy is not about selection effects: a CalvoPlus model + a Bertrand menu cost model
[▶ more](#)
3. Under sticky prices *and* sticky wages due to menu costs, optimal policy still stabilizes W ;
[▶ more](#)

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Quantitative model: setup

Does W target dominate P target in a dynamic **quantitative model**?

Household: dynamic problem

$$\max_{\{C_t, N_t, B_t, M_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma}}{1-\gamma} - \omega \frac{N_t^{1+\varphi}}{1+\varphi} + \ln \left(\frac{M_t}{P_t} \right) \right]$$

s.t. $P_t C_t + B_t + M_t \leq R_t B_{t-1} + W_t N_t + M_{t-1} + D_t - T_t$

Quantitative model: intermediate firms

Intermediate firms: **idiosyncratic** shocks, **Calvo+** price setting

$$\begin{aligned} & \max_{p_{it}(j), \chi_{it}(j)} \sum_{t=0}^{\infty} \mathbb{E} \left[\frac{1}{R^t P_t} \{ p_{it}(j) y_{it}(j) - W_t n_{it}(j) (1 - \tau) - \chi_{it}(j) \psi W_t \} \right] \\ \text{s.t.} \quad & y_{it}(j) = A_{it} a_{it}(j) n_{it}(j)^\alpha \\ & \psi_{it}(j) = \begin{cases} \psi & \text{w/ prob. } 1 - \nu \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Productivity distribution: mixture between AR(1) and uniform (**fat tail**)

$$\log(a_{it}(j)) = \begin{cases} \rho_{\text{idio}} \log(a_{it-1}(j)) + \varepsilon_{it}^{\text{idio}}(j) & \text{with prob. } 1 - \varsigma \\ \mathcal{U}[-\log(\underline{a}), \log(\bar{a})] & \text{with prob. } \varsigma \end{cases}$$

Calibration

(1) drawn from literature vs.

	Parameter (monthly frequency)	Value	Target
β	Discount factor	0.99835	2% annual interest rate
ω	Disutility of labor	1	standard
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)
γ	Inverse EIS	2	standard
S	Number of sectors	6	Nakamura and Steinsson (2010)
η	Elasticity of subst. between sectors	5	standard value
α	Returns to scale	0.6	standard value

Calibration

(1) drawn from literature vs. (2) calibrated by SMM targeting

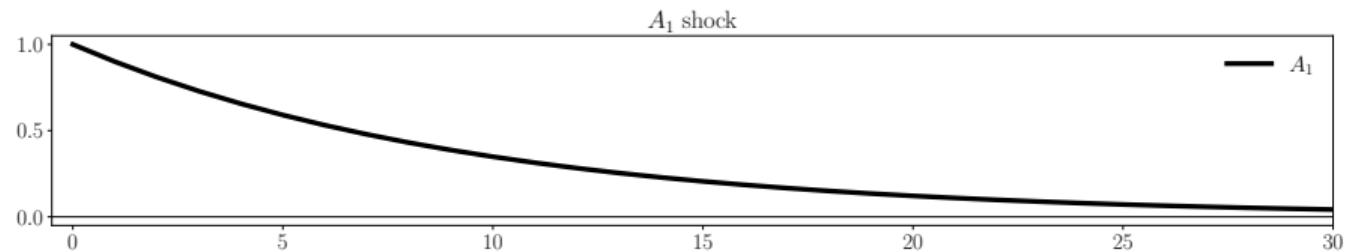
	Parameter (monthly frequency)	Value	Target		
β	Discount factor	0.99835	2% annual interest rate		
ω	Disutility of labor	1	standard		
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)		
γ	Inverse EIS	2	standard		
S	Number of sectors	6	Nakamura and Steinsson (2010)		
η	Elasticity of subst. between sectors	5	standard value		
α	Returns to scale	0.6	standard value		
σ_{idio}	Standard deviation of idio. shocks	0.058	menu cost expenditure / revenue	1.0	(1.1%)
ρ_{idio}	Persistence of idio. shocks	0.992	share of price changers	9.7	(10.1%)
ψ	Menu cost	0.1	median absolute price change	8.3	(7.9%)
ν	Calvo parameter	0.09	Q1 absolute price change	4.2	(5.6%)
ς	Fat tail parameter	0.001	Q3 absolute price change	12.0	(12.5%)
			kurtosis of price changes	5.4	(5.1)

Exercise: perfect foresight sectoral shock

▶ more

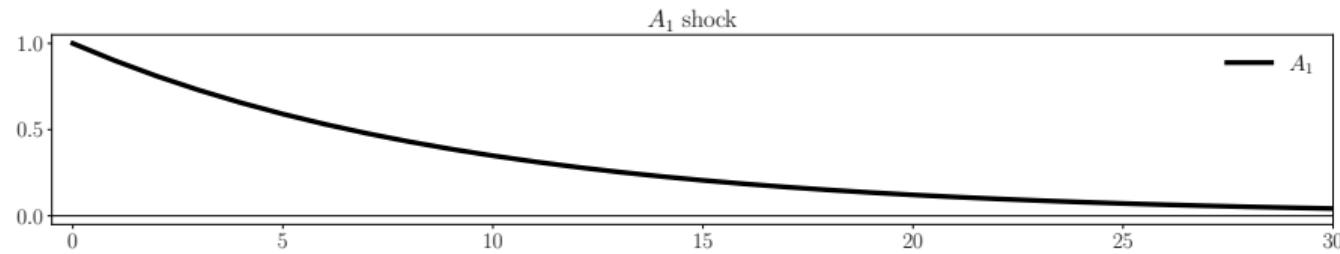
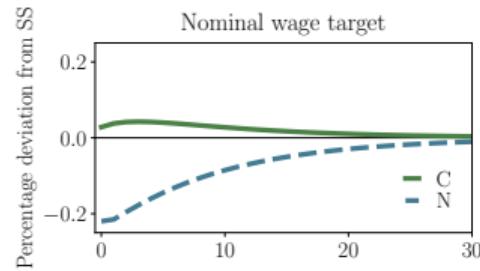
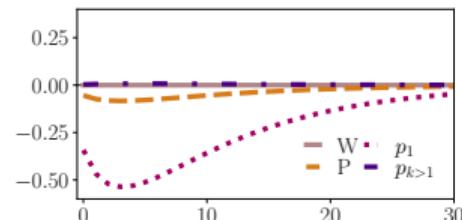
Exercise: perfect foresight sectoral shock

more



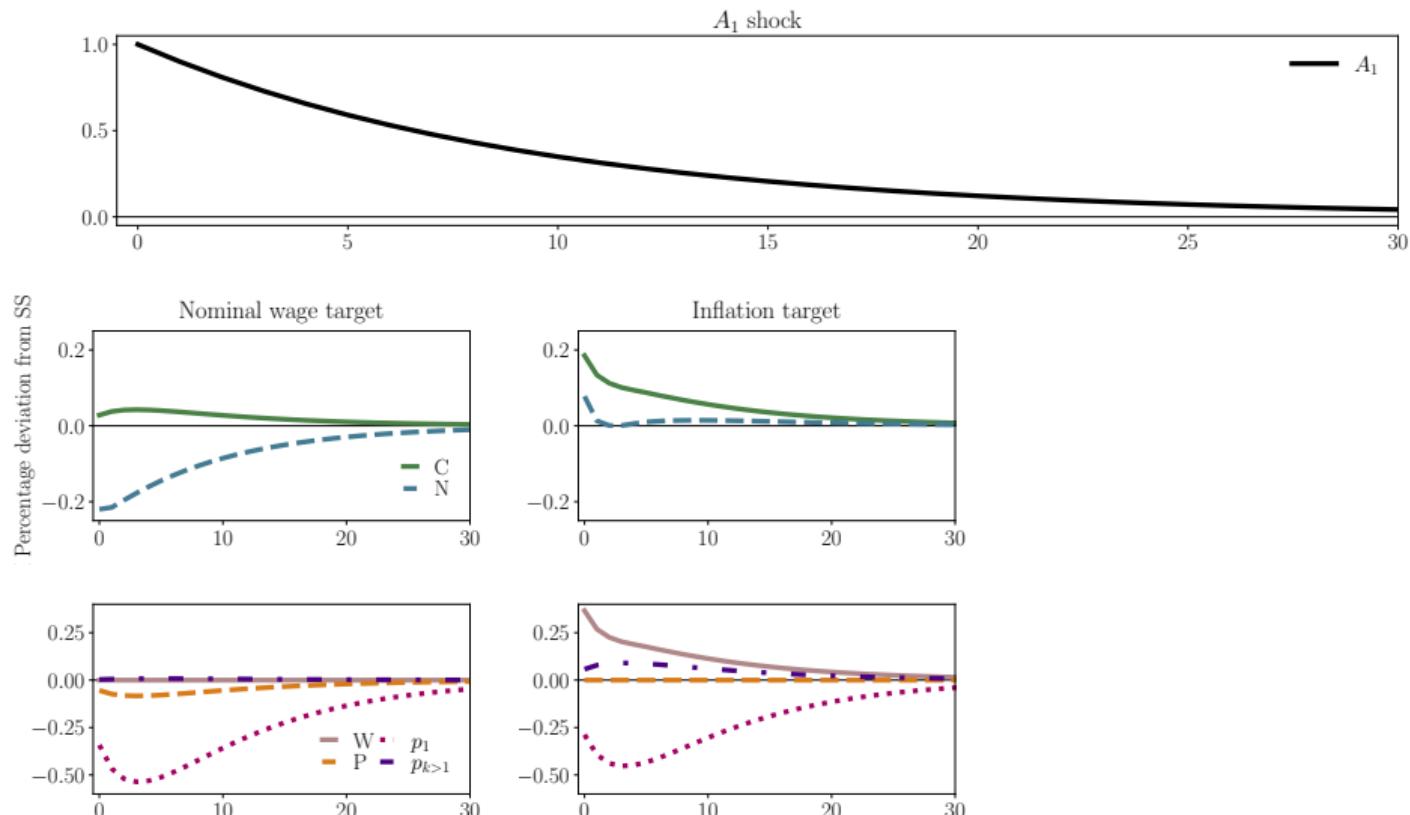
Exercise: perfect foresight sectoral shock

more



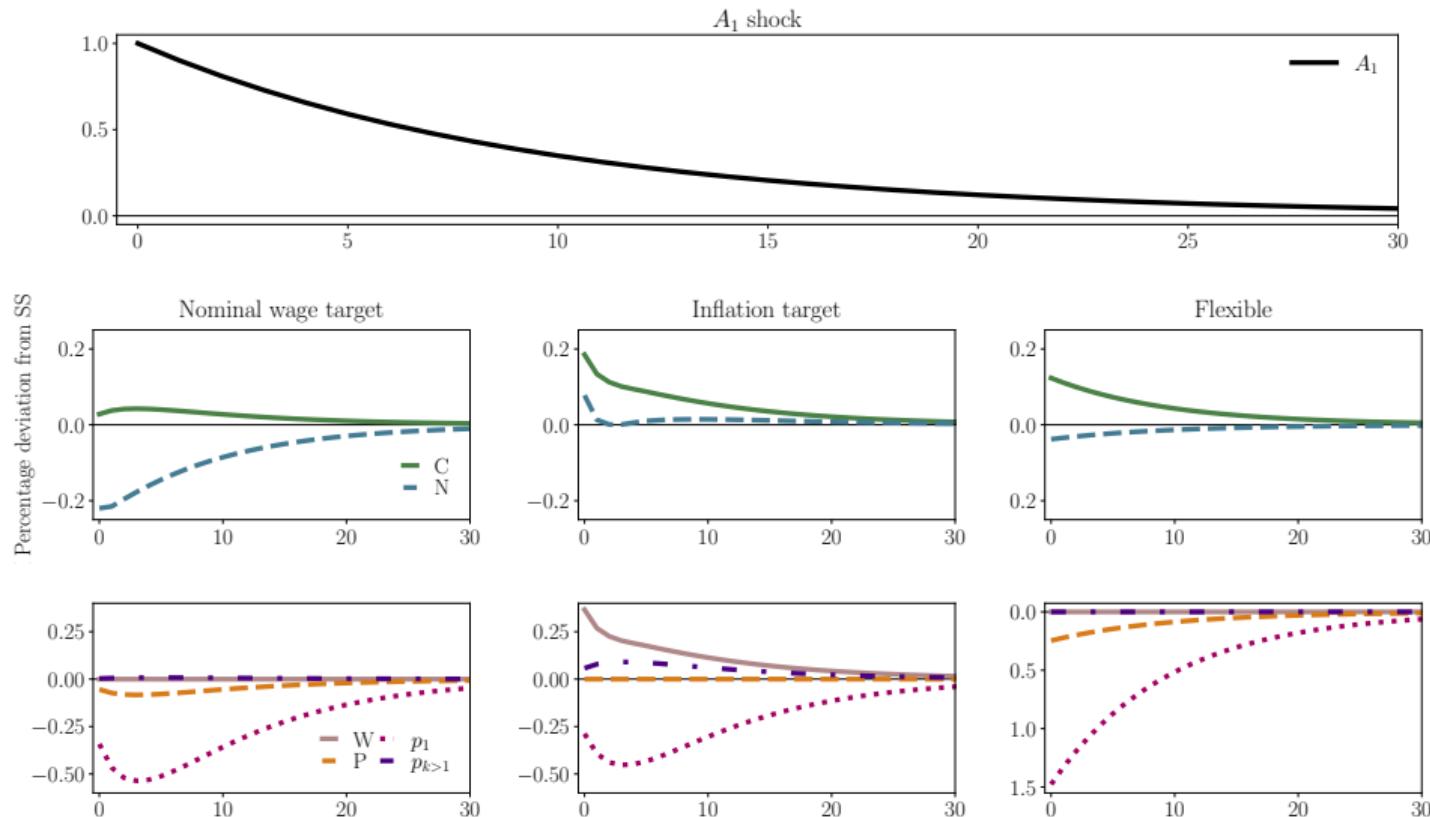
Exercise: perfect foresight sectoral shock

more

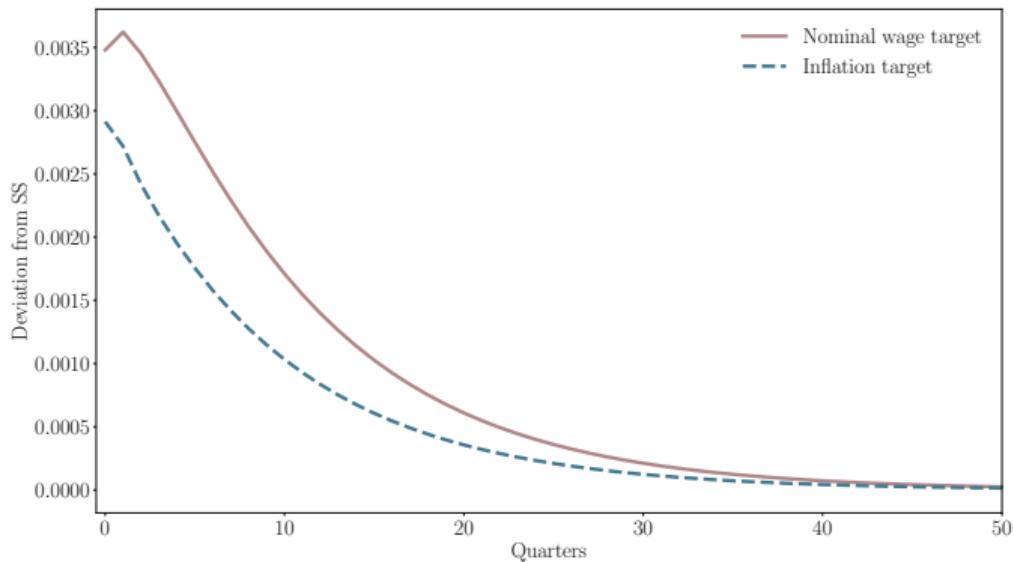


Exercise: perfect foresight sectoral shock

more

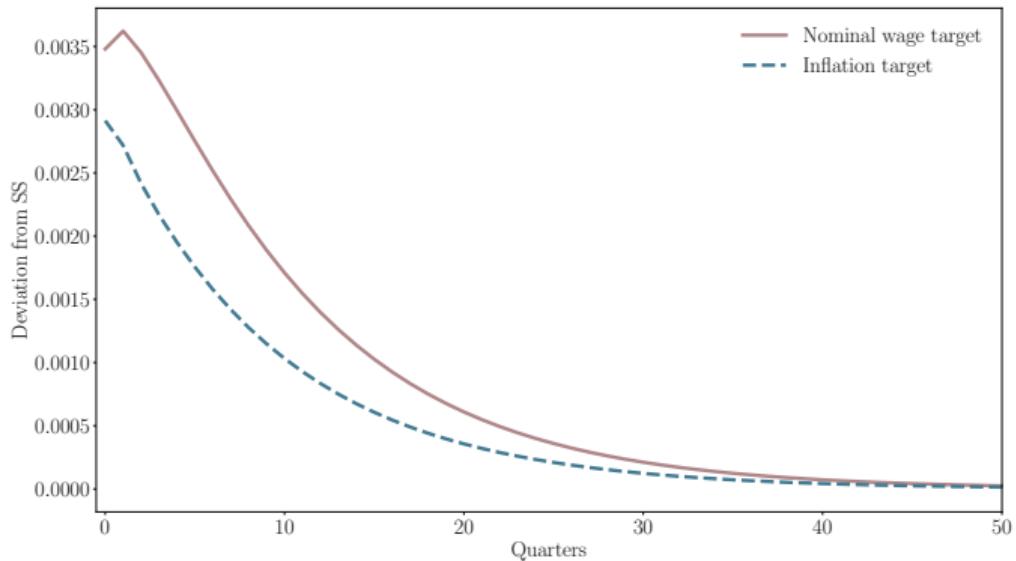


Policy comparison: welfare

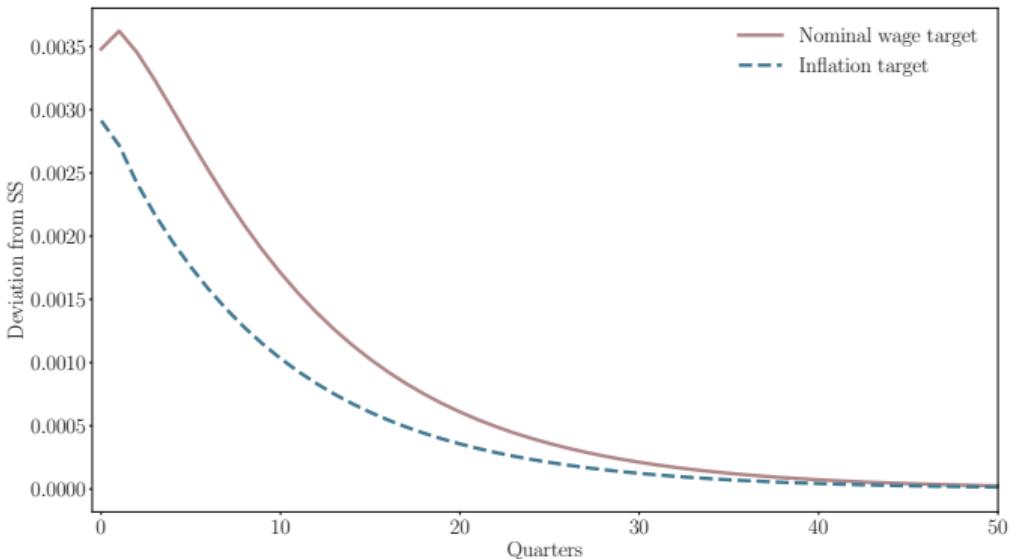


Policy comparison: welfare

1. Consider welfare under P targeting



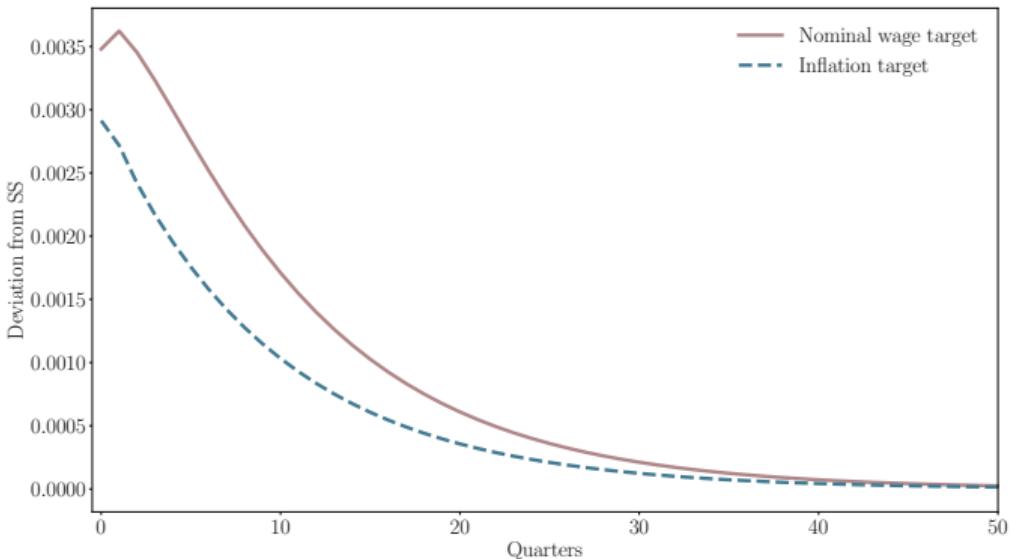
Policy comparison: welfare



1. Consider welfare under P targeting
2. How much extra C is needed to match welfare under wage targeting?

$$\begin{aligned} & \sum_t \beta^t U((1+\lambda)C_t^P, N_t^P) \\ &= \sum_t \beta^t U(C_t^W, N_t^W) \end{aligned}$$

Policy comparison: welfare



1. Consider welfare under P targeting
2. How much extra C is needed to match welfare under wage targeting?

$$\begin{aligned} & \sum_t \beta^t U((1 + \lambda)C_t^P, N_t^P) \\ &= \sum_t \beta^t U(C_t^W, N_t^W) \end{aligned}$$

3. Require consumption to be permanently $\lambda = 0.008\%$, for P targeting to match W targeting

Welfare over the business cycle

1. Shock sector productivities according to

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_A$$

2. $\rho_A = 0.962$ $\varepsilon_A \sim \mathcal{N}(0, 0.003)$ → match U.S. output dynamics 1984-2019

[Garin, Pries, and Sims 2018]

3. Welfare gain of nominal wage targeting over inflation targeting: $\lambda = 0.32\%$

Welfare over the business cycle

1. Shock sector productivities according to

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_A$$

2. $\rho_A = 0.962$ $\varepsilon_A \sim \mathcal{N}(0, 0.003)$ → match U.S. output dynamics 1984-2019

[Garin, Pries, and Sims 2018]

3. Welfare gain of nominal wage targeting over inflation targeting: $\lambda = 0.32\%$

⇒ Nominal wage targeting dominates inflation targeting in quantitative model

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Why not inflation targeting?

▶ more

- ▶ **Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$.** Why?

[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

Why not inflation targeting?

▶ more

- ▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why?
[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

- ▶ **Menu costs are *nonconvex*:**

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

Why not inflation targeting?

▶ more

- ▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why?
[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

- ▶ **Menu costs are *nonconvex*:**

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ **Contrast with *convex* menu costs:** e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

Why not inflation targeting?

▶ more

- ▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why?
[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

- ▶ **Menu costs are *nonconvex*:**

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ **Contrast with *convex* menu costs:** e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

Why not inflation targeting?

more

- ▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why?
[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

- ▶ **Menu costs are nonconvex:**

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ **Contrast with convex menu costs:** e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

- ▶ Nonconvex labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ Rotemberg labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

Why not inflation targeting?

more

- ▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why?
[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

- ▶ **Menu costs are nonconvex:**

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ **Contrast with convex menu costs:** e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

- ▶ Nonconvex labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{ss}\}$$

- ▶ Rotemberg labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

Convex costs \implies smooth price changes across sectors

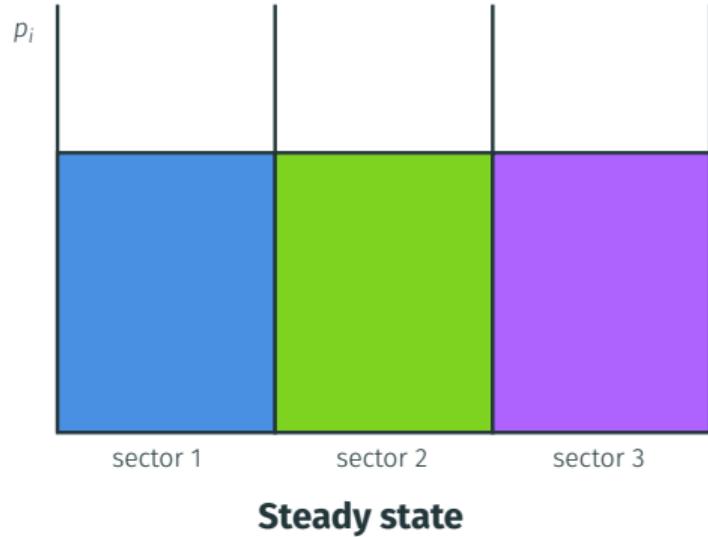
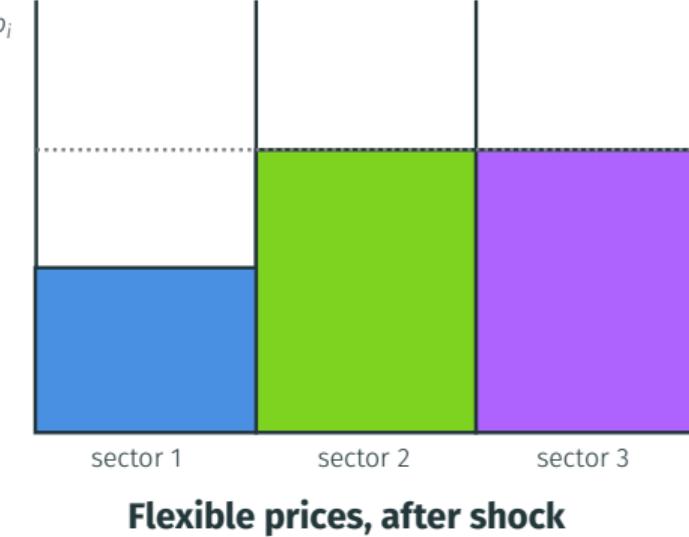
Calvo: Likewise, welfare cost of price dispersion is convex:

$$\Delta \equiv \sum_{i=1}^S \int_0^1 \left[\frac{p_i(j)}{p_i} \right]^{-\eta} dj$$

where $\eta > 1$ is the within-sector elasticity of substitution

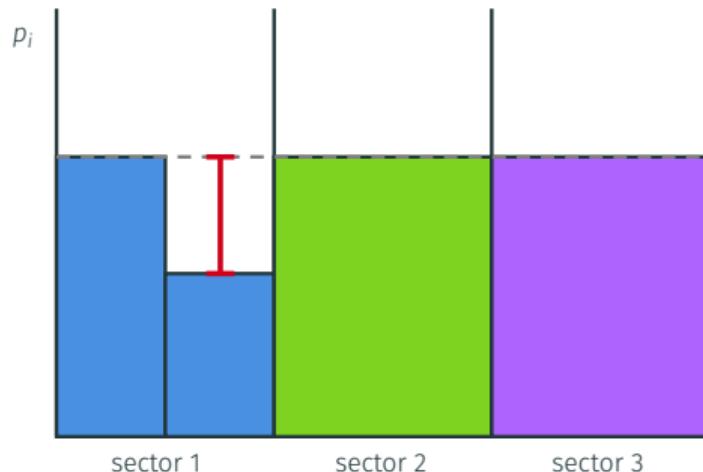
Calvo diagram: shocking sector-1 productivity

math



Calvo diagram: shocking sector-1 productivity

math

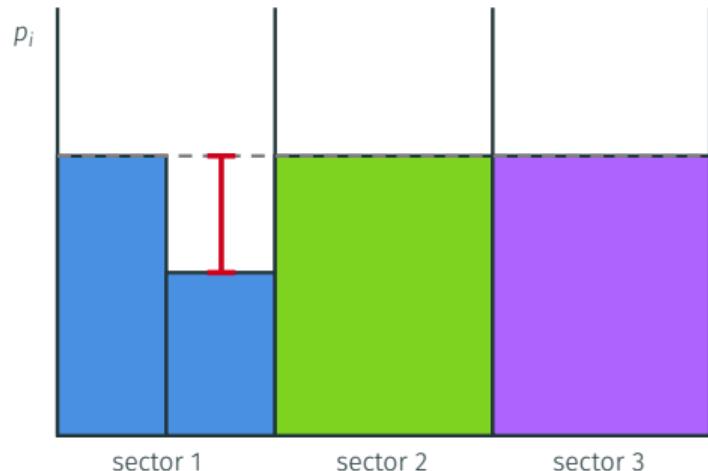


**Nominal wage targeting
under Calvo**

Lots of price dispersion: only one sector

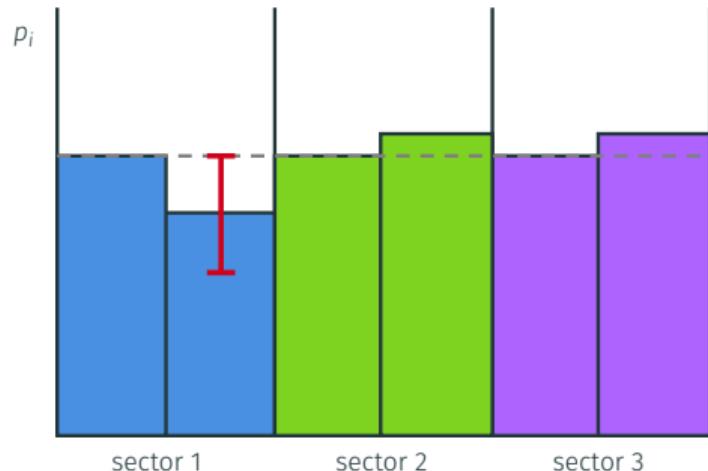
Calvo diagram: shocking sector-1 productivity

math



**Nominal wage targeting
under Calvo**

Lots of price dispersion: only one sector



**Inflation targeting
under Calvo**

Little price dispersion: all sectors

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

“Robustly” optimal monetary policy?

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

- ▶ RBC + cash = Friedman rule
- ▶ RBC + Calvo = inflation targeting
- ▶ RBC + menu costs = countercyclical inflation

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

- ▶ RBC + cash = Friedman rule
- ▶ RBC + Calvo = inflation targeting
- ▶ RBC + menu costs = countercyclical inflation
- ▶ RBC + ...

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

“The friction zoo”: Dozens of “optimal” monetary policy papers, each differing in frictions added. What should a central bank actually do?

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

“The friction zoo”: Dozens of “optimal” monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: **countercyclical inflation** is **robustly optimal**: across four ‘classes’ of model

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

“The friction zoo”: Dozens of “optimal” monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: **countercyclical inflation** is **robustly optimal**: across four ‘classes’ of model

1. Sticky wages
2. Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
3. Information frictions: Angeletos and La’O (2020)

“Robustly” optimal monetary policy?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

“The friction zoo”: Dozens of “optimal” monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: **countercyclical inflation** is **robustly optimal**: across four ‘classes’ of model

1. Sticky wages
2. Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
3. Information frictions: Angeletos and La’O (2020)
4. Sticky prices [**new**]: **Caratelli and Halperin (2024)**

Summary

In baseline menu cost model, **inflation should be countercyclical** after sectoral shocks

Rationale:

- ▶ Inflation targeting **forces firms to adjust unnecessarily**, which is costly with menu costs
- ▶ Nominal wage targeting does not

Summary

In baseline menu cost model, **inflation should be countercyclical** after sectoral shocks

Rationale:

- ▶ Inflation targeting **forces firms to adjust unnecessarily**, which is costly with menu costs
- ▶ Nominal wage targeting does not

Future work:

- ▶ Convexity of menu costs
- ▶ Better direct measurement of menu costs
- ▶ “Unified theory of optimal monetary policy”?

Thank you!

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Equilibrium characterization

◀ Back

Sectoral packagers:

$$y_i = \left[\int_0^1 y_i(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{\eta}{\eta-1}}$$

$$y_i(j) = y_i \left[\frac{p_i(j)}{p_i} \right]^{-\eta}$$

$$p_i = \left[\int_0^1 p_i(j)^{1-\eta} dj \right]^{\frac{1}{1-\eta}}$$

Intermediate producers:

$$y_i(j) = A_i n_i(j)$$

$$p_i(j)^{\text{opt}} = \frac{\eta}{\eta-1} (1-\tau) \frac{W}{A_i}$$

$$\chi_i = \mathbb{I} \left\{ \frac{1}{\eta} > y_i \left[\frac{p_i^{\text{old}}}{p_i} \right]^{-\eta} \left(p_i^{\text{old}} - \frac{W}{A_i} \frac{\eta-1}{\eta} \right) \right\}$$

Household:

$$M = PC$$

$$M = W$$

$$C = \prod C_i^{1/S}$$

$$P = S \prod p_i^{1/S}$$

Government:

$$1 - \tau = \frac{\eta - 1}{\eta}$$

$$-T + (M - M_{-1}) = \tau W \sum n_i$$

Market clearing:

$$N = \sum n_i + \psi \sum \chi_i$$

Final goods demand:

$$C = \prod y_i^{1/S}$$

$$P = S \prod p_i^{1/S}$$

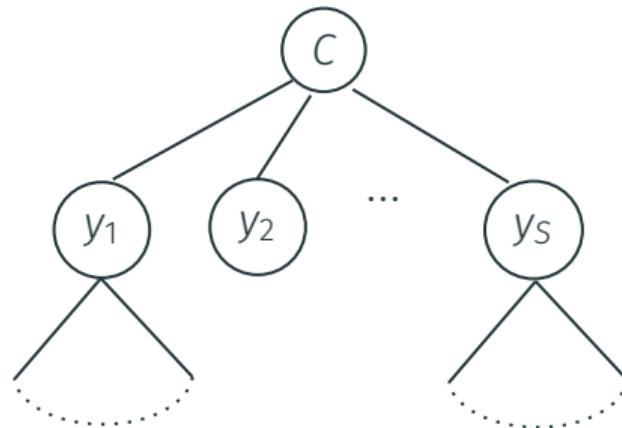
$$y_i = \frac{1}{S} \frac{PC}{p_i}$$

Sectoral packagers (competitive):

$$y_i = \left[\int_0^1 y_i(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{\eta}{\eta-1}}$$

$$y_i(j) = y_i \left[\frac{p_i(j)}{p_i} \right]^{-\eta}$$

$$p_i = \left[\int_0^1 p_i(j)^{1-\eta} dj \right]^{\frac{1}{1-\eta}}$$



$y_1(j)$

$y_S(j)$

Formally: Social planner's problem

◀ back

$$\max_{X \in \{A, B, C, D\}} \mathbb{U}^X$$

$$\mathbb{U}^A = \left\{ \begin{array}{ll} \max_M & \ln[M] - M[S - 1 + 1/\gamma] \\ \text{s.t.} & \min(\gamma\lambda_1, \lambda_2) \leq M \leq \max(\gamma\lambda_1, \lambda_2) \end{array} \right\}$$

$$\mathbb{U}^B = \left\{ \ln \left[\frac{1}{S} \gamma^{1/S} \right] - 1 - \psi \right\}$$

$$\mathbb{U}^C = \left\{ \begin{array}{ll} \max_M & \ln \left[\left(\frac{\gamma}{S} \right)^{\frac{1}{S}} \cdot M^{\frac{S-1}{S}} \right] - [(S-1)M + \frac{1}{S}] - \frac{1}{S}\psi \\ \text{s.t.} & \lambda_1 < M < \min(\gamma\lambda_1, \lambda_2) \end{array} \right\}$$

$$\mathbb{U}^D = \left\{ \begin{array}{ll} \max_M & \ln \left[S^{\frac{1-S}{S}} M^{\frac{1}{S}} \right] - \left[\frac{S-1}{S} + \frac{M}{\gamma} \right] - \frac{S-1}{S}\psi \\ \text{s.t.} & \max(\gamma\lambda_1, \lambda_2) < M < \gamma\lambda_2 \end{array} \right\}$$

$$\text{where } \lambda_1 = \frac{1}{S} \left(1 - \sqrt{\psi} \right), \quad \lambda_2 = \frac{1}{S} \left(1 + \sqrt{\psi} \right)$$

Adjustment externalities

▶ back

Example: Social planner's *constrained* problem for "neither adjust"

$$\max_M U(C(M), N(M)) \quad (1)$$

$$\text{s.t. } D_1^{\text{adjust}} < D_1^{\text{no adjust}} \quad (2)$$

$$D_k^{\text{adjust}} < D_k^{\text{no adjust}} \quad (3)$$

$$\implies M_{\text{unconstrained}}^*$$

Social planner's *unconstrained* problem: maximize (1), without constraints

$$\implies M_{\text{constrained}}^*$$

Adjustment externality: $M_{\text{unconstrained}}^* \neq M_{\text{constrained}}^*$

Labor costs: Welfare mechanism is *higher labor*

$$\begin{aligned} & \text{profits}_i - W\psi \cdot \chi_i \\ \implies & N = \sum n_i + \psi \sum \chi_i \end{aligned}$$

Real resource cost: Welfare mechanism is *lower consumption*

$$\begin{aligned} & \text{profits}_i \cdot (1 - \psi \cdot \chi_i) \\ \implies & C = Y \left(1 - \psi \sum_i \chi_i \right) \end{aligned}$$

Direct utility cost: Welfare mechanism is *direct*

$$\text{utility} - \psi \cdot \sum \chi_i$$

Nominal wage targeting:

$$\hat{W} = 0$$

$$\hat{p}_1(A) = -\hat{\gamma}$$

$$\hat{p}_k(A) = 0$$

$$\hat{P} = -\frac{1}{S}(1 - \theta)\hat{\gamma}$$

$$\hat{C} = \frac{1}{S}(1 - \theta)\hat{\gamma}$$

$$\hat{N} = -\frac{1}{S}\theta\hat{\gamma}$$

Inflation targeting:

$$\hat{W} = \frac{\hat{\gamma}}{S}$$

$$\hat{p}_1(A) = -\hat{\gamma} + \frac{1}{S}\hat{\gamma}$$

$$\hat{p}_k(A) = \frac{\hat{\gamma}}{S}$$

$$\hat{P} = 0$$

$$\hat{C} = \hat{C}^f = \frac{\hat{\gamma}}{S}$$

$$\hat{N} = \hat{N}^f = 0$$

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$

$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- p_1 adjusts
- W stabilized, so p_k doesn't have to change

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$

$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- p_1 adjusts
- W stabilized, so p_k doesn't have to change

Monopsony sticky wage model:

homogeneous output + differentiated labor

$$P = \frac{W_1}{A_1}$$

$$P = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

- P adjust, so $W_1 = W_k$ doesn't have to adjust

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$

$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- p_1 adjusts
- W stabilized, so p_k doesn't have to change

Monopsony sticky wage model:

homogeneous output + differentiated labor

$$P = \frac{W_1}{A_1}$$

$$P = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

- P adjust, so $W_1 = W_k$ doesn't have to adjust

Monopsony model is anti-Keynesian: inverted NKPC (Rowe 2014; Dennery 2021)

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$

$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- p_1 adjusts
- W stabilized, so p_k doesn't have to change

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$

$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- p_1 adjusts
- W stabilized, so p_k doesn't have to change

Standard sticky wage model:

differentiated output + *differentiated* labor

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

- p_1 adjusts, so $W_1 = W_k = p_k$ doesn't have to adjust
- Wages, $W_1 = W_k$, stabilized

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

1. **Option 1:** p_1 adjusts

- ψ_P

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

1. **Option 1:** p_1 adjusts
 - ψ_P
2. **Option 2:** W_1 adjusts
 $\implies W_k$ adjusts $\implies p_k$ adjusts
 - $(S - 1)\psi_P + S\psi_W$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

1. **Option 1:** p_1 adjusts
 - ψ_P
2. **Option 2:** W_1 adjusts
 $\implies W_k$ adjusts $\implies p_k$ adjusts
 - $(S - 1)\psi_P + S\psi_W$
3. **Option 3:** p_k adjusts
 $\implies W_k$ adjusts
 - $(S - 1)\psi_W$ and $W_1 \neq W_k$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any price p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock: $A_1 \uparrow$

1. **Option 1:** p_1 adjusts

- ψ_P

2. **Option 2:** W_1 adjusts

$$\implies W_k \text{ adjusts} \implies p_k \text{ adjusts}$$

- $(S - 1)\psi_P + S\psi_W$

3. **Option 3:** p_k adjusts

$$\implies W_k \text{ adjusts}$$

- $(S - 1)\psi_W$ and $W_1 \neq W_k$

Optimal policy: p_1 adjusts, $W = W_1 = W_k$
stable

Consider two model variants:

1. **CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, *dampening* selection effects

Consider two model variants:

1. **CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, *dampening* selection effects
 - \implies Statement of proposition 1 unchanged, with \bar{A} reduced (and decreasing in ν)

Consider two model variants:

1. **CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects

► \implies Statement of proposition 1 unchanged, with \bar{A} reduced (and decreasing in ν)

2. **Menu cost model *without any selection effects*:**

- Firms *always* set price equal to ideal price
- Must pay a menu cost if doing so requires change in price

Consider two model variants:

1. **CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects

► \Rightarrow Statement of proposition 1 unchanged, with \bar{A} reduced (and decreasing in ν)

2. **Menu cost model without any selection effects:**

- Firms *always* set price equal to ideal price
- Must pay a menu cost if doing so requires change in price

► \Rightarrow Optimal policy unchanged, with $\bar{A} = 0$.

Consider two model variants:

1. **CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects

► \Rightarrow Statement of proposition 1 unchanged, with \bar{A} reduced (and decreasing in ν)

2. **Menu cost model without any selection effects:**

- Firms *always* set price equal to ideal price
- Must pay a menu cost if doing so requires change in price

► \Rightarrow Optimal policy unchanged, with $\bar{A} = 0$.

Selection effects show up in \bar{A}

Proposition 5: Suppose sector i has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1 < \sum_{k>1} S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \bar{A} .

- ▶ *Proof:* Follows exactly as in proof of proposition 1.

Proposition 5: Suppose sector i has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1 < \sum_{k>1} S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \bar{A} .

- ▶ *Proof:* Follows exactly as in proof of proposition 1.

Interpretation 1: monetary “least-cost avoider principle”

Interpretation 2: “stabilizing the stickiest price”

Proposition 7: Consider an arbitrary set of productivity shocks to the baseline model, $\{A_1, \dots, A_S\}$.

1. Conditional on sectors $\Omega \subseteq \{1, \dots, S\}$ adjusting, optimal policy is given by setting $M = M_{\Omega}^* \equiv \frac{S-\omega}{\sum_{i \notin \Omega} \frac{1}{A_i}}$, where $\omega \equiv |\Omega|$.
2. The optimal set of sectors that should adjust, Ω^* , is given by comparing welfare under the various possibilities for Ω , using W_{Ω}^* defined in the paper.
3. Nominal wage targeting is exactly optimal if the set of sectors which should not adjust are unshocked: $A_i = 1 \ \forall i \notin \Omega^*$.

Proposition 6: Suppose:

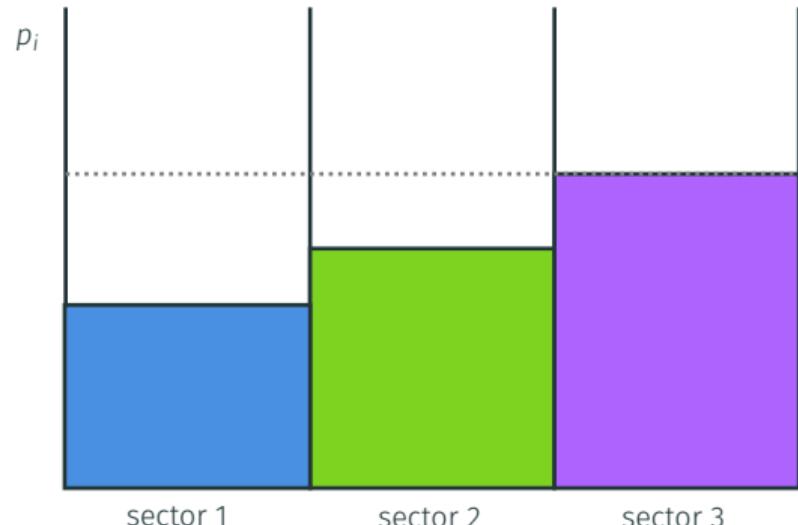
1. Some **strict subset** $\Omega \subset \{1, \dots, S\}$ of sectors is shocked, with “heterogeneous enough” $A_i \neq 1$ for all shocked sectors.

$$\text{Recall: } p_i^* = MC_i = \frac{W}{A_i}$$

Proposition 6: Suppose:

1. Some strict subset $\Omega \subset \{1, \dots, S\}$ of sectors is shocked, with “heterogeneous enough” $A_i \neq 1$ for all shocked sectors.

Then optimal policy sets $W = W^{ss}$.



Price adjustment frequency tracks inflation in the timeseries

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow

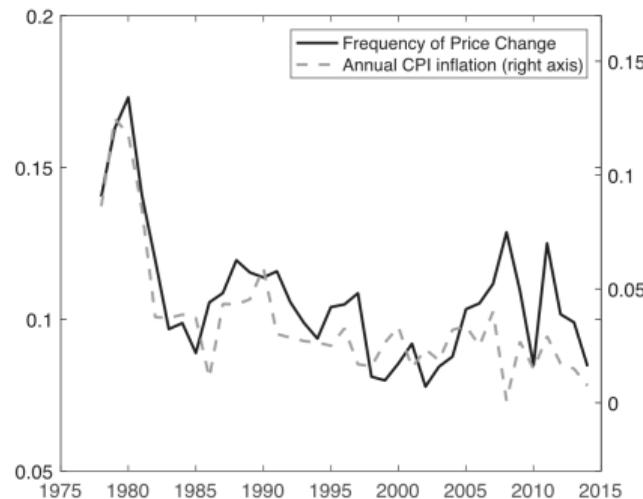


FIGURE XIV
Frequency of Price Change in U.S. Data

Figure 3: Nakamura et al (2018)

Price adjustment frequency tracks inflation in the timeseries

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow

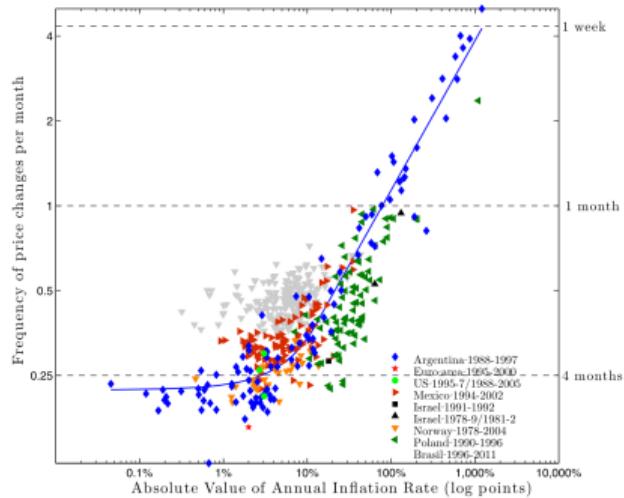


FIGURE VI
The Frequency of Price Changes (λ) and Expected Inflation: International Evidence

Figure 3: Alvarez et al (2018)

Price adjustment frequency tracks inflation in the timeseries

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow

(a) Frequency of Adjustment

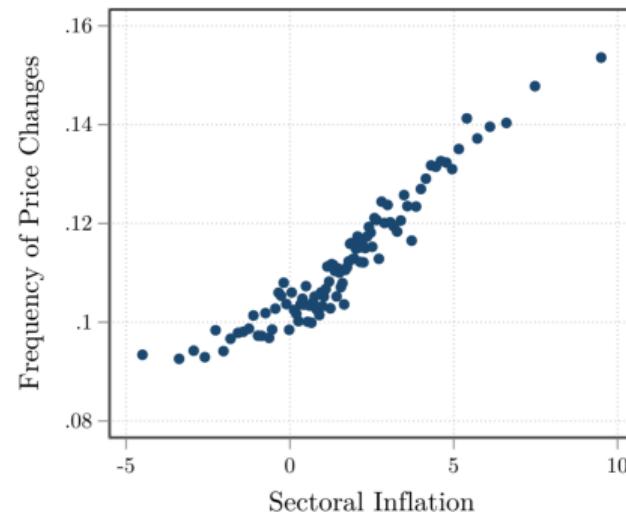


Figure 3: Blanco et al (2022)

Price adjustment frequency tracks inflation in the timeseries

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow

Figure 1: Frequency of price changes

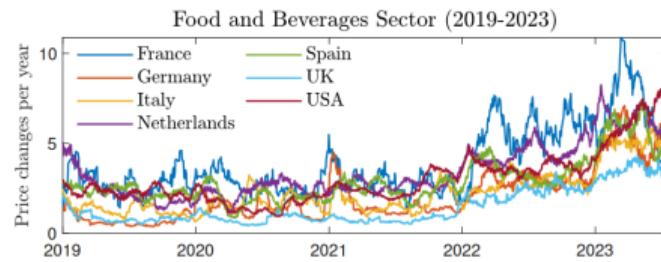
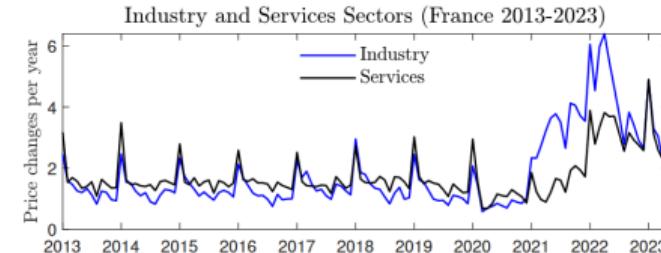


Figure 3: Cavallo et al (2023)

Evidence of inaction regions

Figure 8

The Distribution of the Size of Price Changes in the United States

What should central banks do?

▶ back

What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

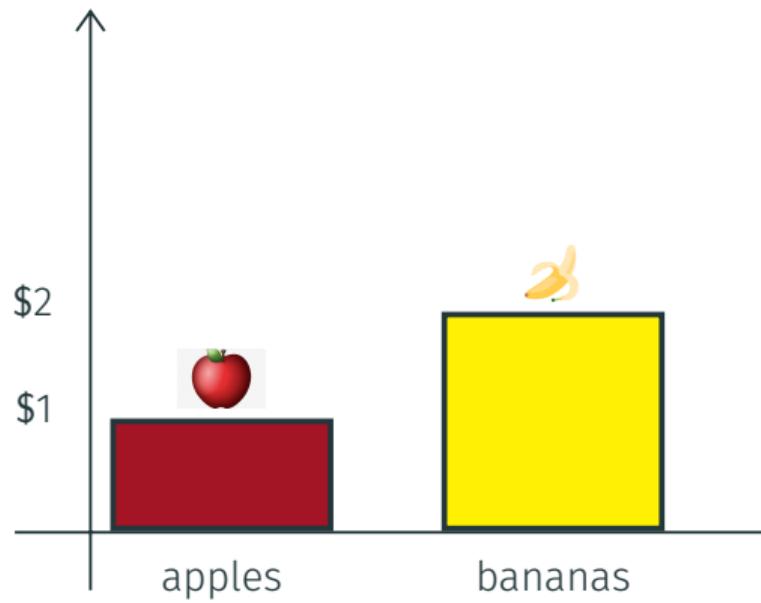
Benchmark: monetary policy
doesn't matter

What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

Benchmark: monetary policy *doesn't* matter



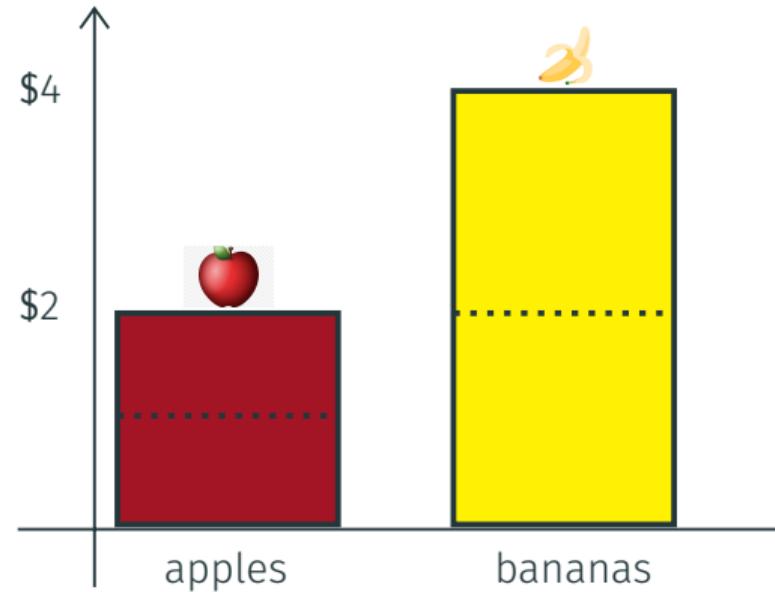
What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

Benchmark: monetary policy *doesn't* matter

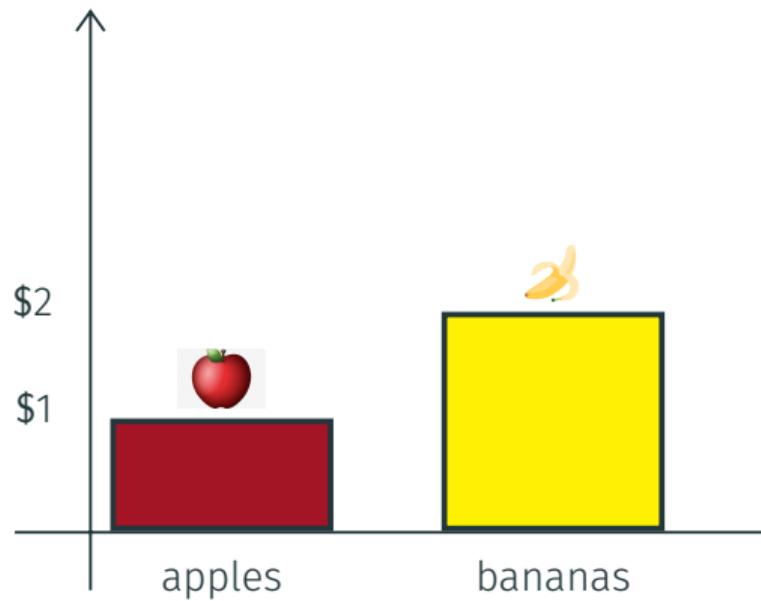
- ▶ Money supply doubles
⇒ all prices double
⇒ *nothing real affected*
by monetary policy



What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

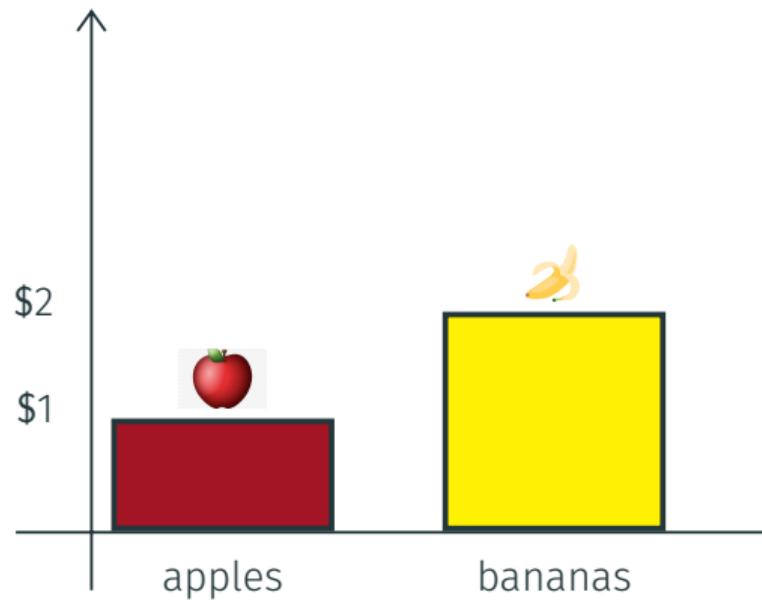


What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

Prices are sticky



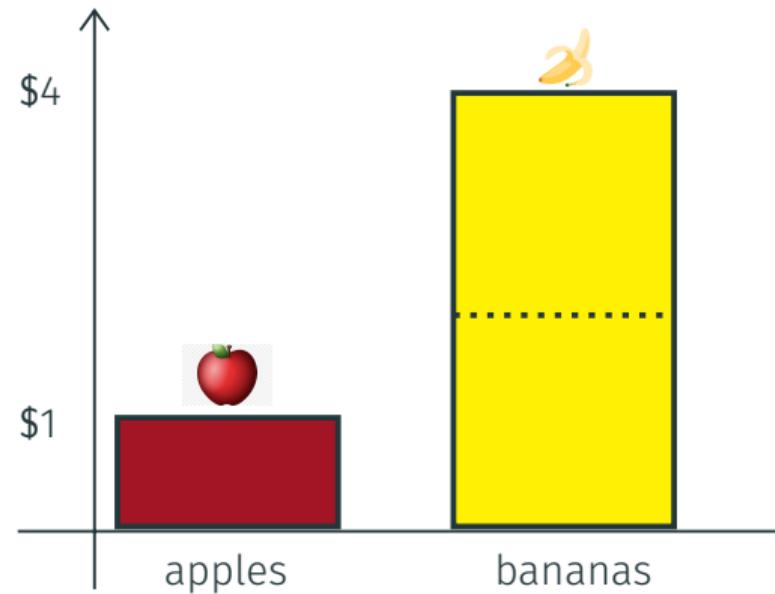
What should central banks do?

▶ back

Background: **Why does monetary policy matter?**

Prices are *sticky*

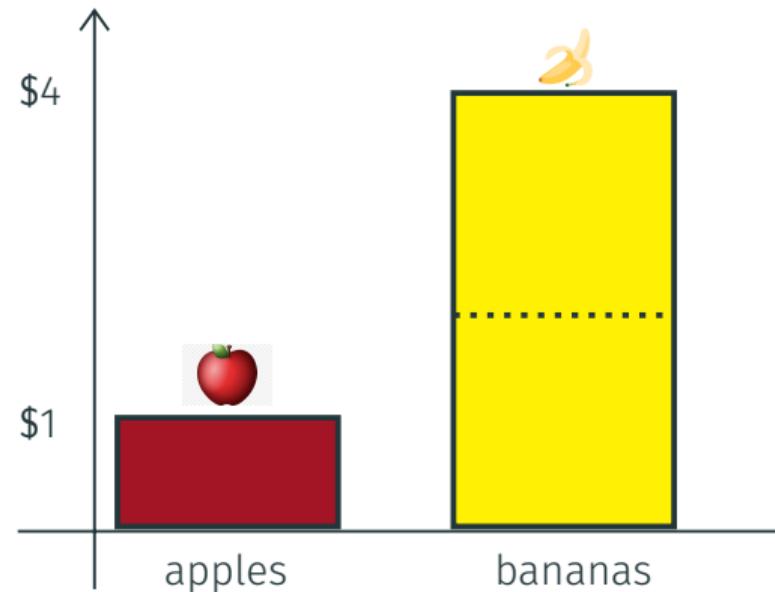
- ▶ Money supply doubles
 - ⇒ some prices are *stuck*
 - ⇒ **distorted** relative prices



Background: **Why does monetary policy matter?**

Prices are *sticky*

- ▶ Money supply doubles
 - ⇒ some prices are stuck
 - ⇒ **distorted** relative prices
- ▶ Large empirical literature

[▶ more](#)

“Inflation targeting”: $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \bar{A}$. Then:

1. Inflation targeting requires all sectors adjust their prices
2. Welfare loss from inflation targeting \propto size of menu costs

$$W^* - W^{IT} = (S - 1)\psi$$

“Inflation targeting”: $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \bar{A}$. Then:

1. Inflation targeting requires all sectors adjust their prices
2. Welfare loss from inflation targeting \propto size of menu costs

$$W^* - W^{IT} = (S - 1)\psi$$

What are menu costs?

1. **Physical adjustment costs.** Baseline interpretation.

“Inflation targeting”: $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \bar{A}$. Then:

1. Inflation targeting requires all sectors adjust their prices
2. Welfare loss from inflation targeting \propto size of menu costs

$$W^* - W^{IT} = (S - 1)\psi$$

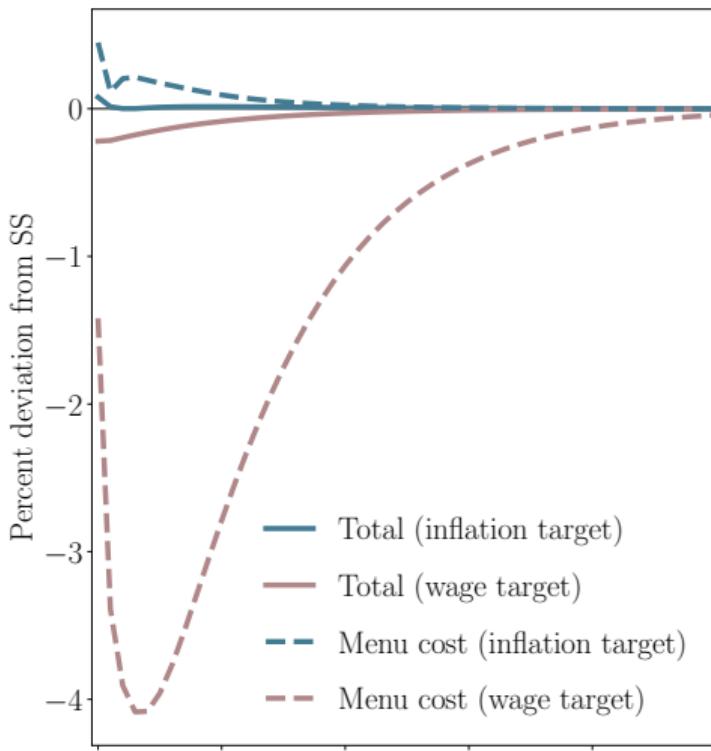
What are menu costs?

1. **Physical adjustment costs.** Baseline interpretation.
2. **Information costs.** Fixed costs of information acquisition / processing.
 - Results unchanged
3. **Behavioral costs.** Consumer distaste for price changes.
 - Results unchanged

Additional MIT shock figures

◀ back

A: Labor



B: Real menu cost expenditure

